EDInfo Biomedical Sciences Maciver Lab. Home ABP  A-Z Encyclopaedia Amoebae Protist Links Cytoskeleton Links Site Index
Amano, T., Tanabe, K., Eto, T., Narumiya, S. & Mizuno, K. (2001) LIM-kinase 2 induces formation of stress fibres, focal adhesions and membrane blebs, dependent on its activation by Rho-associated kinase-catalysed phosphorylation at threonine-505. Biochem. J. 354, 149-159.
LIM-kinase 1 and 2 (LIMK1 and LIMK2) phosphorylate cofilin and induce actin cytoskeletal reorganization. LIMK1 is activated by Rho-associated, coiled-coil-forming protein kinase (ROCK) and p21-activated kinase 1 (PAK1), but activation mechanisms and cellular functions of LIMK2 have remained to be determined. We report here that LIMK1 and LIMK2 phosphorylate both cofilin and actin-depolymerizing factor (ADF) specifically at Ser-3 and exhibit partially distinct substrate specificity when tested using site-directed cofilin mutants as substrates. We also show that LIMK2 is activated by ROCK by phosphorylation at Thr-505 within the activation loop. Wild-type LIMK2, but not its mutant (T505V) with replacement of Thr-505 by Val, was activated by ROCK in vitro and in vivo. LIMK2 mutants with replacement of Thr-505 by one or two Glu residues (T505E or T505EE) increased the kinase activity about 3.6-fold but were not further activated by ROCK. When expressed in HeLa cells, wild-type LIMK2, but not the T505V mutant, induced the formation of stress fibres, focal adhesions and membrane blebs. Furthermore, inhibitors of Rho and ROCK significantly suppressed LIMK2-induced stress fibres and membrane blebs. These results suggest that LIMK2 functions downstream of the Rho-ROCK signalling pathway and plays a role in reorganization of actin filaments and membrane structures, by phosphorylating cofilin/ADF proteins.
 
  EDInfo Biomedical Sciences Cytoskeletal Links Encyclopaedia of A.B.P.s The Amoebae Protozoology links Glossary of Amoeba terms   Maciver Lab Home