EDInfo Biomedical Sciences Maciver Lab. Home ABP  A-Z Encyclopaedia Amoebae Protist Links Cytoskeleton Links Site Index
Gungabissoon, R. A., Khan, S., Hussey, P. J. & Maciver, S. K. (2001) Interaction of EF1a from Zea mays (ZmEF1a) with F-actin and interplay with the maize actin severing protein, ZmADF3., Cell Motility Cytoskeleton. 49, 104-111.
EF-1alpha is an abundant eukaryotic protein whose principle function appears to be to bind aminoacyl-tRNA to the ribosome. However, it is also known that EF-1alpha from other sources binds both microtubules and microfilaments. We report the expression of Zea mays EF-1alpha (ZmEF-1alpha) in bacteria and that this protein has similar actin-binding properties as other EF-1alpha members. ZmEF-1alpha bundles actin filaments at low pH (6.5) and inhibits the addition of monomer at both filament ends, possibly as a consequence. ZmEF-1alpha binds actin filaments at all pH values tested (pH 6.0-8.0), indicating that one actin binding site is not pH sensitive. One of the actin-binding sites was determined to reside within domain I (1-223) of ZmEF-1alpha, but this domain did not affect the kinetics of polymerisation. We show that the bundling activity of ZmEF-1alpha is modulated by ZmADF3 a (a Zea mays ADF/cofilin), an actin filament severing protein, in vitro. Bundling of actin filaments caused by ZmEF-1alpha was enhanced in the presence of ZmADF3. The pH-dependent activities of both proteins in vitro suggests that they may work together to respond to temporal and spatial intracellular pH changes to regulate the pattern of the growth of plant cells.
  EDInfo Biomedical Sciences Cytoskeletal Links Encyclopaedia of A.B.P.s The Amoebae Protozoology links Glossary of Amoeba terms   Maciver Lab Home